
Software Updates
for IoT
Concept
The SUIT working group is chartered to develop firmware
update solutions that can be implemented into Internet of
Things (IoT) devices; especially those with limited RAM and
flash memory, such as ~10 KiB RAM and ~100 KiB flash.

Background

References

Recent attacks on IoT devices have taken advantage of poor
device configuration (e.g. the Mirai botnet generated a 600Gbps
DDOS using IP-based cameras). It has also been reported that
software updates have effectively bricked devices without user
consent (e.g. Nest); similarly the lack of firmware updates has
caused broken APIs (e.g. Samsung Smart Fridge).

There is no modern interoperable approach allowing secure
firmware updates to IoT devices. Work in RFC8240 provides a
summary of the state of the art.

SUIT defines a manifest form to specify what the firmware
images contain. The format is currently defined at:
tools.ietf.org/html/draft-moran-suit-manifest

suitmanifest.json

It contains the version of the manifest format, a manifest
description, the payload description, the vendor and the model
names. (Not present in the example) it also may have directives,
dependencies and extensions.

The payload information contains the format, the size, the
storage identifier, a message digest as well the digest algorithm
used; SHA-256 in this case.

The payload format serialized in CBOR and signed in COSE; the
assumption is that the Firmware Server is capable of encoding
the manifest and of signing it with its private key.

git.io/fxh6D

Jaime Jiménez - jaime.jimenez@ericsson.com

Conclusion

A basic SUIT implementation requires the capability to:

q Generate a Manifest (JSON)
q Encode it in Constrained Binary Representation format

(CBOR).
q Sign it with COSE (RFC8252).
q Send it to the device.
q Verify the Manifest on the device.
q Reboot and flash.

The hardware has been customized by ARM for the Software
Updates work in IETF. It features an Atmel Secure element and
connectivity over Wifi and BLE. Leds are used for visual
feedback.

Mbed supports it on , they also provide an online
compiler to implement the device logic:
https://os.mbed.com/compiler/

It is possible to locally run the CLI, to facilitate the
work there is a docker image available:

Implementation

This work provides a standard and interoperable way to do
Firmware updates. It is currently being standardized and
prototyped on various IoT OSs. Now it is a good time to prepare
IoT solutions for the coming of this technology.

It is also possible to locally run the environment on
docker:

A basic update module manages firmware transfer over CoAP,
verification and storage is done in Flash within the non-running
image slot.

✓
✓

✓✓

✓✗

suitmanifest.cbor

~$ docker pull jaime/mbed-cli 
~$ docker run -it --entrypoint=/bin/bash jaim/mbed-
cli:latest

~$ docker pull riot/riotbuild
~$ git clone https://github.com/RIOT-OS/RIOT.git
~$ cd RIOT
~$ make BUILD_IN_DOCKER=1 -C examples/hello-world/ 

BOARD=frdm-k64f

https://github.com/RIOT-OS/RIOT.gitocker

